Quierschieder Weg 38, 66280 Sulzbach anfrage@apm-telescopes.de

APM Professional Telescopes

APM Professional Telescopes

1m F/8 Ritchey Chrétien with dual Nasmyth Foci, Cape Town (South Africa)

Another large telescope for the South African Astronomical Observatory (SAAO). An 1m F/8 Alt-Az mounted Ritchey Chrétien for robotic use. It has dual Nasmyth Foci. The main telescopes used for research are located at the SAAO observing station (32°22.795’S 20°48,657’E) near Sutherland in the Northern Cape, a 4-hour drive from Cape Town.

Astronomy is our job

Observatory Telescopes

Big prime focus telescopes for private or public observatories including installation and full service.

Robotic / Remote

Robotic instruments for automatic imaging or telescopes for remote observation.

Whoppshel Spectroscope

The Whoppshel, a high resolution echelle spectroscope

By Olivier Garde

20160228 Réglage ESP 300 002

The Whoppshel was born from the demand of our customers to have a higher resolution echelle spectroscope than the eShel for telescopes of one meter class. The whoppshel, with a resolution R = 30000, is particularly adapted to radial velocity measurements.

FSQ106x2

The two FSQ-106 refractor

 Prismes 1

The three prisms composing the cross-disperser

 ESP2

In the foreground on the left the main grating

Whoppshel is based on a few principles:

  • An optical White Pupil architecture, which allows to naturally compensate for certain optical aberrations (passing twice symmetrically in the optical components), and on the other hand to maintain a reasonable target size.

  • The use of Takahashi lens (FSQ106 at F/ 3.6) for the collimator and a high-end photo lens (Canon 135mm F/2) for the objective lens. All the high constraints on the optics are thus embedded in high quality elements manufactured in series.

  • The instrument is assembled on an extremely rigid optical bench.

    The cross-disperser of the echelle spectrum is obtained using three prisms specially made for this spectrograph.

Optical path of Whoppshel

 Like eShel, Whoppshel is a fiber optic spectrograph. It uses the same injection fiber module, the same optical fibers and the same calibration box as the eShel range.

PrincipeEchelleVGB

Schematic Whoppshel diagram

The light collected by the telescope is injected via the 50μm optical fiber in the middle of the two Takahashi lens, a small mirror deviates the beam towards the first telescope. The beam is then spread out by the echelle grating. It is then returned to the two symmetrically mounted lens, which eliminates most of their residual aberrations. The output converges to the three prisms (cross-disperser) which separate the different orders. The 135mm photo lens open at f/2 finally retrieves the sprectrum signal in both axes to focus the spectrum on the CCD sensor of the camera.

Specifications

The Whoppshel has a resolving power of approximately R = 30000 (slightly variable according to the orders) and covers a wavelength range from 3900 Å to 7600Å.

This spectrograph has a length of 2.10m and measures 0.6m in its greatest width. It is installed on 2 optical benches, 0.9×0.6m and 1.2m x 0.3m assembled very rigidly together. The total mass of the spectrograph is 81 kg.

A Bosch profile structure (standard elements) allows the entire enclosure of the instrument to be protected from stray lights and dust.

For the spectral calibration performed with Whoppshel, the same calibration unit as the one dedicated to eShel is used. This calibration unit includes a Halogen lamp to generate flats and a Thorium / Argon spectral lamp with a very large number of lines distributed over all orders of the spectrograph. The calibration unit can be controlled remotely via an RS 232 interface.

Here’s a spectrum of the Th/Ar lamp use for wavelength calibration :

ThAr

To inject the light flux coming from the telescope, the Whoppshel uses the same injection and guiding module as the eShel spectrograph according to the f / d ratio of the telescope:

• For telescopes open at f / d 6: FIGU F/6 – 50µm 
• For telescopes open at f / d 9: FIGU F/9 – 50µm

It is therefore necessary that the telescope approaches the f / d ratios above for maximum efficiency.

Of course, we need to add to the setup,  a  50µm object fiber for object, a  optical fiber 200µm for calibration, and a guiding camera.

A 105μm optical fiber can also be used to take lower magnitude target, in which case the resolution of the Whoppshel will be about R = 15000.

Additional modules: technical specifications

Description Shelyak ref. Acc. type Included Comment
FIGU F/6 50μm PF0008 Guiding module   Bonnette STANDARD
FIGU F/7.8 50μm PF0066 Guiding module    
FIGU F/9 50μm PF0018 Guiding module    
FIGU F/7 50μm PF0067 Guiding module    
FIGU F/6 105μm PF0068 Guiding module    
FIGU F/9 105μm PF0069 Guiding module    
FIGU F/7.8 105μm PF0070 Guiding module    
FIGU F/7 105μm PF0071 Guiding module   Includes ThAr lamp, and flat (Tungsten & LEDs)
eShel calibration module PF0012 Calibration module  

 

Plan3D

Delivery and assembly of the spectroscope

The Whoppshel is delivered in spare parts because of its dimensions (Shelyak can of course install and adjust the Whoppshel for you if necessary). An assembly instructions  allows the entire spectroscope to be assembled step by step.

Since the instrument is installed on an optical bench, the installation is done by following the beam of light element by element – editing is an extremely educational exercise, particularly useful for students.

Montage

It takes about 2 days to assemble and tune the Whoopshel.

CCDfoc fsq1

The CCD camera on its support and its optics                                                  FWHM Measurement of the spot with Audelà software

The CCD camera is mounted on its holder with its 135mm optics, it will be used during all stages of the assembling to tune the focus and alignment of each optical element. This operation is greatly facilitated by the fact that all light streams are at the same height and centered on the camera. Thanks to the AudeLA software, we can measure the FWHM of the spot after each optical element.

The ATIK 460ex CCD camera is particularly recommended for this spectrograph because of the width of its sensor, its quantum efficiency and the read noise about 5e-. Other CCD cameras can of course be used, just check that the sensor can cover all the orders of the spectrograph and also that orders can overlap from one order to another. At a minimum, the ATIK 460ex meets these criteria. If you want to use another camera, you have to take into account the distance between the optical axis of the CCD and the optical bench which is 102mm.

First try : The Sun light

Without waiting for the night, we can make a first test of the spectrograph by using the day light directly on the optical fiber placed outside. Here is the first raw spectrum obtained:

SpectreSolaeilESP

In this raw image, we have identified some lines of the solar light, such as Balmer lines (Hα, Hβ, Hγ, Hδ), the Sodium doublet (D1, D2) and the magnesium triplet.

The orders identified are from 42 to 87, the latter containing the lines H and K of the calcium.

LHIRESvsESP

LHIRES III R=18000                                   Woppshel R=30000

 

 HKSunSpectrumSmall

H and K lines from the Sun at 3968,47 Å and 3933,68 Å

 

First stellar observations

First light on Be star Zet Tau (mag. V=3,03) with a Richtey-Chretien telescope of 400mm diameter : 3 exposures of 300s with an ATIK 460ex CCD use in bin 1×1 mode.

zeta tau

Eta Tau ESP vs eShel

Above, another test with the star Eta Tau, mag. V = 2.87 with the same telescope of 400mm diameter and the comparison with the spectrograph eShel R = 11000 (curve in blue). We can be seen that Whoppshel solves the telluric lines present around the H Alpha line better than the Eshel spectrograph.

Finally, an observation of P Cyg, mag. V = 4.82, still with the same telescope of 400mm of diameter.

22 exposures of 300 seconds.

pcyg

APM Professional Telescopes

1m F/8 Ritchey Chrétien with dual Nasmyth Foci, Cape Town (South Africa)

Another large telescope for the South African Astronomical Observatory (SAAO). An 1m F/8 Alt-Az mounted Ritchey Chrétien for robotic use. It has dual Nasmyth Foci. The main telescopes used for research are located at the SAAO observing station (32°22.795’S 20°48,657’E) near Sutherland in the Northern Cape, a 4-hour drive from Cape Town.

Creative Contact Form

Contact Us
Feel free to contact us if you have any questions

COMPANY HQ

APM Telescopes
Quierschieder Weg 38
66280 Sulzbach
GERMANY

Telefon: +49 (0)6897 - 924929-0
Fax:       +49 (0)6897 - 924929-9
E-Mail: info@apm-telescopes.de
WWW: https://www.apm-professional-telescopes.com

Wir benutzen Cookies

Wir nutzen Cookies auf unserer Website. Einige von ihnen sind essenziell für den Betrieb der Seite, während andere uns helfen, diese Website und die Nutzererfahrung zu verbessern (Tracking Cookies). Sie können selbst entscheiden, ob Sie die Cookies zulassen möchten. Bitte beachten Sie, dass bei einer Ablehnung womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen.